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ABSTRACT

The purpose of this investigation was to determine analytically the
molecular incidence rates on the various surfaces of the space simulator.
The mathematical model of the space simulator consists of two concentrically
located spherical surfaces corresponding to the chamber wall outside and to
the vehicle inside. The analysis is divided into two phases.

Phase I deals with conditions of uniform pumping and outgassing on
each surface. A square pulse of outgassing is assumed to occur and the total
number of molecular hits is determined for each surface. These results are
extended to a steady state uniform flow and the molecular incidence rates are
obtained.

Phase II is an analysis of the nonuniform case introduced by surface
discontinuities of axiosymmetric type. The procedure followed is to deter-
mine the various probabilities that a molecule leaving a surface will hit
spherical zones on either surface. Using these probabilities the molecular
incidence rates can be determined. While the probabilities have been found,
analytic expressions for molecular incidence determination are very difficult
to obtain.

The problem, therefore, was approached from a computer point of view
enabling us to obtain computer solutions with a high degree of accuracy.

PUBLICATION REVIEW

This report has been reviewed and publication is approved.

Donald D. Carlson Jean A. Jack
Lt Col, USAF Colonel, USAF
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SYMBOLS

Subscripts v and c refer to vehicle and chamber wall, respectively. In case
we specify a portion on either of these two suriaces, v and c will be employed
accordingly.

ax - pumping coefficient on surface x (where x - v or c)

P W probability that a molecule leaving surface x will hit surface yxy (-cor v) without an intermediate collision. Clearly P - 1, P - 0
vc vv

H - total number of molecular hits against the non-pumping surface y duexy to a flow originated at surface x.

H total number of molecular hits against the non-pumping portion of
surface x (x - v or c)

Mx (n) - number of molecules pumped out on surface x during the intervalnr_<t<(n+l)T, n-l,2,...

M - total number of molecules pumped out on surface xx

f x(n) - number of molecules leaving surface x during the interval
nT<t<(n1l)T, n-I, 2,...

F - steady state uniform flow per unit area per unit time originating at
x surface x

R - rate of molecular incidence on surface x per unit areax
r - radius of surface x

7 - angle between the tangent vector to the vehicle and the radial vector
both vectors drawn from a point on the chamber wall.

In considering the probability P of a point p (see Figures 2,3,4,5,6,7)xy

0 = latitude of the point p
P

C0 a boundary of the surface region on y illuminated from p
p

6 a latitude on surface y

G - subregion of the illuminated region on y bounded by Cqp and/or 0
0 for which the latitude 0 of any point in that subregion satisfies

the relation 0>0-0

ix
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Spherical Zone Probabilities

P (Oiee) probability that a molecule departing from a point on surface x
XY with latitude e will hit the surface region on surface y bounded

below by the lahitude eO. This region may or may not be illuminated
completely from that point (see Figures 8 - 15).

P = probability that a molecule departing from a spherical zone Xi
xiYj will hit the spherical zone Yj.

P(xi)n number of molecules leaving the spherical zone xi during
nT<t< (n+l)T

X i i'th spherical zone on surface X

N = spherical zone on the chamber wall whose upper boundary is the
discontinuous line.

Single Surface Discontinuity

a = a for all i
vi v

a =a
ci cl -l

= a2 1n+--<i<2N

91= flow rate per unit area introduced on the part of the chamber
wall for which a = a

92 = flow rate per unit area introduced on the part of the chamber
wall for which a = a

ci c2

g = flow per unit area introduced on the vehicle

X, Y, Z = usual cartesian coordinate system

r, e, 0 = usual spherical coordinate system

S= complement of e

= same as

(eiseJ) = spherical zone on either surface bounded by the latitudes 8i
and 0 1

e d = latitude of discontinuous line on chamber wall

N = number of spherical zones of a hemisphere

N2  M '/&

ej = lower latitude of the I'th spherical zone

Lira Ce1  - maximum latitude of Ce1

Lim Ce1  = lower latitude of Ce1

x
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1.0 INTRODUCTION

As a necessary consequence of the space age, it has become mandatory
to plan for ground testing of space vehicles, components and materials. The
duplication of all the spatial environments is obviously impossible. Many
papers have been written defining those environments which could be simulated
and the degree to which simulation is required. Among those listed as neces-
sary and feasible is the low pressure environment of outer space. It is
frequently stated that a pressure of 10-5 Torr is sufficient to simulate the
thermal radiation environment and the high electrical impedance of space.
This statement alone does not define where the pressure is measured, nor in
fact what is meant by pressure in the highly directional conditions of both
true space and a space environmental simulator. A serious evaluation of the
nature of the molecular flux in both cases is necessary in order to evaluate
what is meant by simulation.

1.1 THE VEHICLE IN SPACE

Two altogether different gaseous sources surround the vehicle in space.
First, there is the natural environment which was there prior to the entry
of the space vehicle, and secondty, the gas sources which have been contribu-
ted by the vehicle.

The atmosphere of the planet earth at altitudes above 1500 km consists
primarily of hydrogen ions, decreasing in density with increase in altitude.
Below this level, the atmosphere consists principally of oxygen and nitrogen
in atomic, ionized, or molecular states, depending on the altitude. Between
200 and 1500 km the density decreases with increasing altitude from about
1010 to 105 particles per cubic centimeter. The corresponding mean free paths
range from a few miles to several hundred thousand miles, distances which are
huge relative to the dimensions of any space craft. The velocity of these
molecules ranges from 1 to 2 km/sec. Yet, the velocity of an earth satellite
ranges from 7.5 to 11 km/sec. The vehicle then appears to be rushing through
a relatively stationary low density gas medium, most of the collisions being
on the leading edge of the space craft. We note then that the molecular in-
cidence rate, and the pressure, depends on the velocity of the vehicle and
varies over the surface of the vehicle.

In addition to the planet atmosphere, the sun is thought to emit a
variable stream of protons and electrons (solar wind) having a density of
600 to 10,000 protons per cubic centimeter near the earth. The velocity of
these protons varies from 500 to k00m/sec..lepending on the solar activity.
The incidence rate is from 5 x 10" to 2 x 10 particles per second per
square centimeter, which is comparable to the incidence rate of molecules
from the planet atmosphere at high altitudes. Since the velocity of the
solar wind is so much higher than that of the vehicle, the collisions are all
on the side facing the sun. The extremely high energy is sufficient to cause
sputtering or other surface phenomena. Again we note that there is no uni-
formity over the surface of the vehicle, nor can we simply define a pressure
equivalent of altitude.

1
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In addition to the environmental gases, the vehicle itself is a major
source of gas, in the form of outgassing and leakage. This gas is given
off by the vehicle with thermal energies relative to the vehicle. The
outgassing occurs in all directions, but may well vary over the surface of
the vehicle, depending on the variations in the vehicle structure and mater-
ial composition. The outgassing products will travel many miles in a
straight line before making collisions with an environmental molecule, hence
for all practical purposes, the molecules which leave the vehicle are per-
manently gone. Space may therefore be considered as pumping molecules as
fast as they are produced. This pumping action is not related to the con-
ventional concept of effusion velocity of an orifice of a fixed speed per
unit area, as no fixed area of space can be defined as the pumping surface.

In almost all space vehicle situations, the outgassing of the vehicle
represents a far greater density than that contributed by either the planet
environment or the solar wind. Hence, the gas density surrounding the
vehicle is almost entirely made up of the composition of the outgassing pro-
ducts. Yet this gas is all moving away from the vehicle and does not con-
tribute to the gas returning to the vehicle. The returning gas is still
defined by the velocity of the vehicle and the normal environment through

which it is moving.

1.2 THE VEHICLE IN A CHAMBER

When a vehicle is placed in a space simulation chamber, it is again
exposed to two different sources of gas: 1) The natural environment or
background of the chamber, and 2) The gas contributions due to the out-
gassing and leakage of the vehicle.

For true duplication of the atmosphere of space, the chamber back-
ground should match that of the upper atmosphere in gas type, density and
energy. In addition, it should be properly oriented to account for the
relative velocity of the vehicle through the satationary gas, and the solar
wind. While such conditions are not completely impossible, they are suffi-
ciently difficult and expensive, that realistic evaluations are required to
determine the necessity of such duplication. In the normal space chamber,
the residual gas is made up of the outgassing products of the walls of the
chamber and leaks which may exist to the outside atmosphere or to various
internal fluid sections such as cryogenic lines. The composition of this
gas will vary in different chambers, and may include such gas types as:
water vapor, hydrogen, carbon dioxide, carbon monoxide, nitrogen and helium.
The gas is not ionized, and in general is at a temperature of about 1000K.
In addition, there may be directional effects in the event that discontinu-
ities exist on the chamber wall. For example, the presence of a large area
solar simulator may contribute a high outgassing rate from a particular
section of the chamber wall.

When the vehicle is in a chamber, just as when it is in space, the
outgassing of the vehicle is the predominate gas present. However, in the

2
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case of the chamber an altogether different situation exists. In order to
duplicate the effectively infinite pumping speed of outer space the chamber
must have walls which are perfect condensers for all incident molecules.
Since such perfect condensers are not presently feasible, a great majority
of the outgassing from the vehicle is reflected from the chamber wall and
returns to the vehicle. In almost all instances, this returning gas flux
is far larger than the original chamber background. Again we note that
this gas flux does not have the characteristic properties of the permanent
space background. The gas is predominately water and nitrogen. The tempera-
ture is between 100 and 3000 K. Anomalous directional effects may exist if
large areas of non pumping walls are present.

The foregoing differences between a chamber and space may not be of
importance in the superficial condition of simulating for heat transfer and
electrical discharge effects. However, if any surface phenomena is involved,
such as friction or sputtering, entirely different results may be obtained
in the two cases.

1.3 MOLECULAR KINETICS

Considering the foregoing differences between true space and so-called
space simulators, it is apparent the simple question 'What altitude has been
simulated?" is almost impossible to define. In the simplest case it creates
a serious controversy of philosophy, measuring equipment, and people. The
Molecular Kinetics program was started to study the various problems of
gas-vehicle collisions in space and in a chamber, to produce a yardstick
for measuring simulation, and to define the effects or limitations of vari-
ous chamber parameters on the degree of simulation achieved. This program
is divided into a number of different phases, each covered in a different
report. The common denominator of all phases of the Molecular Kinetics
program is the dealing with highly directional gas flows, in terms of measur-
ing, controlling, or defining simulation.

In order to derive a language to be used in the interpretation of
space simulation, and which is compatible with the parameters present in
space simulator, it is first necessary to define the ground rules to be
used. We first note that the vehicle is the point of interest for dis-
cussing simulation, and further it is the molecules arriving at the vehicle
which are of importance. Any measurement or consideration of molecular
fluxes or pressures on the chamber wall are of importance only in so far as
they can be interpreted at the vehicle proper. The second important factor
to be determined is the term to be used for discussing gas particles in the
simulator. Three different terms are immediately apparent: pressure,
density, and particle flux.

While density is very meaningful for the random gas in space in the
absence of a vehicle, it has little meaning for the vehicle when a large
amount of outgassing products from the vehicle are included in the measure-
ment. The density concept does not define the direction of the gas and
hence cannot be related to the molecules striking the vehicle, either in
space or in a chamber.

3
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A consideration of the earlier discussions on the extreme directional
effects both in space and in a chamber indicates that molecular incidence
and energy level are the important factors in assessing simulation. It is
apparent that there is a considerable difference in the temperatures in
space and in a simulator. A theoretical assessment of the temperature of
the molecules received by the vehicle in a space chamber is almost impossi-
ble due to the variations in the temperature within the chamber and the
differences in the accommodation coefficient for different gases. While
pressure is related to both energy and incidence rate, the true measurement
of pressure is likewise a very difficult problem. From both the analysis
and the measurements point of view it is far easier to consider the rate at
which molecules are striking a surface. Except for cases of extreme energy
(such as the solar wind) the surface reactions are more dependent on the
gas type than on the variations of energy which exist. For these, and
other reasons which will be more apparent in the different reports, the
concept of molecular flux has been chosen for all analysis. Molecular flux
is defined as the number of molecules per square centimeter per second
arriving or leaving a given surface.

1.4 MOLECULAR FLUX DISTRIBUTION

This part of the Molecular Kinetics program has to do with the mathe-
matical analysis of computing the molecular flux on every part of the space
vehicle and the chamber walls as a result of outgassing occurring from
either the vehicle or the chamber wall. The program further considers the
effects of a surface discontinuity, such as a solar region, on the flux
distribution. In solving this problem probability equations were first der-
ived for an axial symmetry, and equations were generated for the limiting
conditions of every possible configuration. In all cases a cosine distribu-
tion was assumed for the leaving molecules. The general problem of a single
surface discontinuity was then handled by means of a computer program. The
program considers the case of a spherical vehicle in a spherical chamber,
one of which contains a spherical cap of different properties. The surfaces
are then divided into circular sections about a common axis congruent with
the axis of the single surface discontinuity. A value of sticking coeffi-
cient and outgassing rate is assigned to each surface. The computer program
counts the molecules arriving and leaving each and every surface until a
steady state flow condition is obtained. This final value then defines the
molecular flux to the different parts of the system as a result of the
assumed outgassing rates.

4
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2.0 COSINE DISTRIBUTION

In the molecular migration from one surface to another, it will be
assumed that all molecules follow a "Cosine Distribution"; that is, the

probability that a molecule will travel in a certain direction when it leaves
from a point on a surface is proportional to the cosine of the angle between
this direction and the normal to the surface at the point in question. Thus,
molecules have the greatest tende-,cy to leave a surface in a direction normal

to the surface. The statistical concept of this law is presented in the

following discussion.

Let dA be a surface element on a surface S1 and let us assume that it
is required io find the probability that the molecular flow emitted from that
surface element will hit a specified area A2 on a surface S2* If the element
area dA is taken sufficiently small we may speak, in a sense, of a point p

instead of the element dA as if the total flow from dA was emitted from the
point p. If a sphere S ol arbitrary radius r (unit radius will be convenient)
is constructed with center the point p, the directional vector from the point
p to the boundary of area A will describe a closed curve s on the surface S.
Let A be the area enclosed iy s. If dA is an area element of A we have

dA = r 2cosed~de

Let e = f(O) be the equation of the curve s. The angle between the
normal to Sl at p and the vector to any point of s from p is 2-0. Since we
assume a cosine distribution it follows that the molecular flow through dA
will be

dA Kcos( -e) = Kr 2cosesined4de

2= Kr sinacosaCidp

where

9 0-e, j=4 and K is a proportionally constant

Thus

(Total Flow thru A) = fdpf Kr cosas iida
0

On the other hand
it

(Total Flow thru hemisphere) = fd~f Kr22 cosI•sirord = r 2

0

5
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Then the probability P of hitting the area A from the point p is

1L -f (0)
P (Total flow thru A) 1 2 cosasiroxa

(Total flow thru hemispheret  0

Thus, the probability that a molecule emitted from a point on a sphere of
radius r will hit an inside sphere of radius r is

1 f dof cosasiava -sci nn2 y
i 0o 0
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3.0 UNIFORM PUMPING

The objective of this section is to determine the rate of molecular
incidence on either surface under the most simplified conditions. In this
analysis, the most simplified model of space simulator is considered; i.e.,
a spherical test vehicle located concentrically in a spherical test chamber.

The walls of both the vehicle and the chamber are assumed to have uniform
properties and the pumping coefficients on each of these two surfaces are
assumed uniformly distributed. To be more specific, if we define the
pumping coefficient a by:

x

ax = A I/A

where A is the pumping portion of area A, a remains constant throughout
the suriace x. Furthermore, in order to covir every special case we consider
the general case where ac # av # 0.

The analysis is made on the basis of a pulse of molecules being admitted
uniformly from either the vehicle or the chamber wall or both surfaces. The
results, however, are equally applicable to a steady state flow as it will be
shown in a derivation below.

With this mathematical model we have

Pcv " sin2 y P, Pvc " 1

3.1 DIRECTIONAL FLOW (PULSE)

3.1.1 Differenc* Equations

The following difference equations are easily derived

f v(n+-l) - P(l-a v)f c(n) (3.1)

f c(n+2) - (1-a )(l-P)fc (n+l)+(l-a c)f v(n+l) (3.2)

Substituting 3.1 into 3.2 we obtain

f c(n+2)-(l-a c)(l-P)f c(nll)-(l-a c)(1-a v)Pf c(n) - 0 (3.3)

The general solution of 3.3 is

f (n) - Cr n+C2 r 2n (3.4)

where C1 and C are arbitrary constants which have to be defined from the
boundary condihions, and r1 and r 2 are the roots of the characteristic equation

7
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W(r) - r2-(1-a c)(l-P)r-(l-a c)(l-a v)P - 0 (3.5)

Boundary Conditions

If the flow is introduced on both surfaces, f (1) will not depend on
fc(0) exclusively but on both f (0) and f (0). If The flow is introduced
on surface x only then f (0)fiO for y 0 x. In any case we assume fc (0) and

f c(1) given covering thuX all special cases.

Then from 3.4 by setting n - 0,1 we obtain the following system of
equations

{c(0) :C I + C 2 (3.6)
fc(1) - C 1r + C 2r 2

Determining the constants C and C2 from 3.6 and putting them in 4)
we obtain finally

f()=f c (0)r 1It2 (r1nln" lr 2 n-1 fc (1) (r I n_-r 2n(.7

c r 2 -rI r 2"r 1

However the number of molecules leaving the chamber wall during
nT<t<(n+l)T is the same as the number of molecular hits on the nonpumping
part of the chamber wall during nT_<t<(nrl)T. Hence, the total number of
molecular hits on the chamber wall is

00 f c (l)-r 1r 2 fc (0)
H = Zlfc(n) = -r (3.8)
c n=1 C (1-r I) (1-r 2)

Similarly, from equation 3.1 and 3.8 we obtain

Hv 0v(n+l) - P(l-a) 0 fc(n) (3.9)

Ff(1 -rI r f)(0) 1
f (0) 1-(r 1 +r 2 )- +fc(l)

- P(l-a) (l-rS)(l.r 2 )

-P(1-a) [H •+ fc(0)]

8
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Another form of equations 3.8 and 3.9 in terms of f c(0) and f v(0) can
be obtained by making the following substitution

f c(1) (1-a c)(l-P)fc (0)+(l-a c)f v(0Q)

C (r1+r2) c (0)+(C- C) v(0)

Then 3.8 and 3.9 become

(r 1+r 2 -r 1r 2 ) fc (0)+(l-a c)fv (0)

Hc = (l-r1) (l-r 2 ) (3.10)

f (O)+(l-ac)fv(0) P(l-a) (3.11)H =f -Scv(.1
v (l-r 1 )(l-r 2 )

3.1.2 Special Cases

Two special cases are of interest, namely,

f c(1) - (1-P)(1-ac )fc (0) = (rl+rr2 )fc(0), fv(0) - 0

f c(1) - (1-a c)f v(0) ,f c(0) -0

Substituting these two equations in equations 3.8 and 3.9 or just simply
setting f (0) or f (0) equal to zero in equations 3.10 and 3.11 we obtain the
following special cases.

r 1 +r 2 -r r2

H = 1 )2 ) fc(0) (3.12)cc (1-r I)(1-r 2) c fv(0) - 0
P(l-a )V

H v - ( () f (0) (3.13)
cv (1-r I)(1-r 2) c )
H (lc ) f(0) (3.14)

vc (rf(l'(0) - 0

-rlr

H - 1 fr(0) (3.15)
vv (-rý17) ( 1-r2) fv

9
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3.1.3 Molecular Pumping

The number of molecules pumped on either surface during nT<t<(n+l)T is
given by:

a
Mc(n) = c-a (n) (3.16)

c

a
My(n) =- - f(n) (3.17)

V

The total number of molecules pumped is

a
M= E M (n) = .- H (3.18)

M n=l c i-a c

a
VM =E M (n) =-vH (3.19)

* n=l v 1-a v

Note that we must have

Mc + Mv = f c(0) + f v(0)

since eventually all the introduced molecules must be pumped out. This can
be verified to be the case.

3.2 STEADY STATE UNIFORM FLOW

The results obtained in 3.1 can be extended to the case where a steady
state molecular flow is established instead of a pulse under the following
assumptions.

a) The rate of molecular incidence is determined after a long
period of time since the time when the uniform steady state flow was initiated.

b) Time duration between two successive hits of each molecule is
taken to be a statistical average time interval T.

Consider now a square pulse of flow into the system of time duration
starting at t - 0 and suppose that we want to determine the number of molecular

hits during the time interval nT<t<(n4-l)T.

According to assumption b), the number of molecule hits during the time
interval nT~t<(n+-l)T will depend on how many molecules are present in the
space simulator during the time interval (n-l)T~t<nT. Thus, our problem is
to determine the number of molecular hits f(n) during nT<t<(n+l)T due to a

10
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square pulse established during the time interval Ot<T, or saying the same

thing in a different way, to find the number of molecular hits during 0t<T
due to aquare pulse established -nT ago. If we had two identical pulses

established at t - nT and t - -(n+m)T, each pulse of duration T then by super-
position, the total number of molecular hits during 0Lt<T due to these two
pulses will be f(n)+f(n+m). Now we are ready to pass to a steady uniform
flow. If the flow is considered to consist of square pulses, the total number

of molecules present during the time interval 0•t<T is

E f(n) where N is very large
n=0

If, however, f(n) converges very rapidly (as indeed is the case) we may

replace N by infinity. Then

NEf(n f (n)
n=O n-O

Incidentally, it is obvious that any transient conditions of the flow at the
beginning will have negligible effects.

Now let H be the number of molecular hits during 0•t<T due to • f(n)

molecules present during -T~t<O. Then the rate of molecular n0

incidence during OLt<T is H.

3.2.1 Rate Determination of Molecular Incidence

Clearly

f (0) = (1-a )F c T4:r

v (0) = (1-av )FvT4Er
2

Substituting these in equations 3.10 and 3.11 we obtain

(r 1 +r 2 -r 1r 2 )Fc+(l-av)FvP
R = 1r1 (- (3.2.1)

c (1-r 1 ) (l-r 2 )

R= (1-a c)F c+(l-a c)P(l-a v)Fv (3.2.2)

v (l-r 1 )(l-r 2 )

11
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3.2.2 Special Cases of Rate Determination

a) f - 0 (flow originated at chamber wall)
V

(rl+r2-r12c (3.2.3)

R (a)( r (3.2.4)v (l-r 1 )(l-r 2 )

If a = 0, equations 3.2.3 and 3.2.4 reduce tov

(l-ac )Fc

R =R 1 (3.2.5)
c v a

C

b) f = 0 (flow originated at vehicle)c

(1-a v)PFvR c = (1 rl ( .r )(3.2.6)
c (1-r 1)(1-r 2)

r =122v

R ( 1rl)(l-r 2  (3.2.7)

If a f 0, equations 3.2.6 and 3.2.7 reduce tov

PF
R = -av (3.2.8)c a

c

(I-ac)PFv

R = ( (3.2.9)
v a

c

3.3 RESUME

The results obtained by admitting a square pulse of molecular flow on
either surface are represented by equations 3.8 and 3.9 or 3.10 and 3.11 and
special cases are represented by equations 3.12 - 3.15. The total number of
molecules pumped followed immediately from equations 3.18 and 3.19. Then the
transition from a pulsed to a steady state continuous uniform flow was made
in section 3.2 and the rates of molecular incidence were determined from
equations 3.2.1 and 3.2.2. Particular cases appear in section 3.2.2. This
completes Phase I of the analysis of the project.

12
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4.0 SINGLE SURFACE DISCONTINUITY

A surface discontinuity is established by either a discontinuity in
the molecular flow or discontinuity in the pumping coefficient or both.
Specifically, the function representing a discontinuous flow or a discontinu-
ous pumping coefficient will be in the form of a step function. Further, the
discontinuous line or lines on a surface will be a circle or parallel circles
on the surface. One line discontinuity will be referred to as "single sur-
face discontnuity" and many line discontinuity as "multiple surface discon-
tinuity". Except for these discontinuities, the molecular flow as well as
the pumping coefficient will be assumed uniformly distributed on each surface.
The spherical configuration of the chamber-vehicle system and the types of
discontinuities considered give rise to an axiosymmetric case which simpli-
fies somewhat the mathematical analysis of the problem. As a result of this
axiosymmetry, it is intuitively true that the distribution of molecular hits
on a surface x depends only on the angle 9 between the axis of symmetry and
the radius vector from the co-center of the system to any point on the sur-
face x.

The following analysis deals with a single surface discontinuity on
the chamber wall separating two spherical caps. The molecular flow and the
pumping coefficient in each cap are uniformly distributed but differ from one
cap to the other.

4.1 ANALYSIS APPROACH TO THE PROBABILITY EQUATIONS OF MOLECULAR TRANSFER

The mathematical analysis of the single surface discontinuity is divided
into two parts. Part I deals with setting up the various probability equa-
tions of molecular migration from one surface to specified regions on the
same surface or on another surface. These regions are spherical caps bounded
below by a latitude go. Then the probability that a molecule of a surface
will hit a spherical zone on either surface will be the absolute value of the
difference of two probabilities associating the point p with two spherical
caps. Accordingly, there are three cases discussed.

The first case is when the point p is considered on the chamber wall
and the specified region on the vehicle.

The second case is when both the point p and the specified region are
on the chamber wall.

The third case is when the point p is considered on the vehicle and
the specified region on the chamber wall. Thus, Part I will supply us all
the information needed to proceed to Part II.

Part II deals with computer solutions of the problem. Both surfaces
are divided into a sufficiently large number of spherical zones and the
molecular flux density on each spherical zone on both surfaces is determined
at any time interval. The purpose of these solutions is to provide us with

13
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sufficient information so that we can determine the molecular flux distribu-
tion and the incidence rate at various parts of the vehicle and chamber wall
as a result of two different steady state uniform flows, one introduced at
one part of the discontinuous surface and the other on the other part of the
discontinuous surface.

4.1.1 From the Chamber Wall to the Vehicle

The transformation of coordinates from one orthogonal system to another
can be accomplished by means of the following table

i K

a 1 6x 6Y 1 6z

1 6_x 1
b .6 6 1 z (4.1)

1. ýx 1I 6z
h 7 h7 •7 h7  •7

where i, J, K are unit vectors in the direction of x, y, z in one system and
i, T, c are unit vectors in the directions of a, P and y in the other system,
while ha, ho, h 7 are defined as:

ho=La=s, bj =s hy-=6

Now, let P be a point on the chamber wall with position 0_ and e and let
Op,7 be taken in the directions of increasing o, e and r at P. Then y
coincides with the normal to the surface at P drawn outwards, and the plane
(a, p) becomes the tangent plane at P. The element of length on a sphere of
radius r is given by

2 2 2 d2+2d2
ds1  = r cos2d2+rdo

The element of length at P is given by ds2 = dr 2+ds12 where dsI is an arc
element on the sphere passing through P.

Hence

ds2 = dr2+r 2cos2 d 2+r2 d2

14



AEDC.TDR-63-88

and hI - rcose, to - r, hy - 1

follow immediately.

The equation of a sphere is

X - r Eos~cosei+sin0cosOj+sineK]

Then on the sphere at P

6x/a= -r sinocose ýy/lx M r cosecose

3x/2 = -r cososine 3y/3 = -r sin~sin8

3x = cosocose =y/6y - sinocose

Wzl = 0, 6z/l = r cose, Wzl• = sinO
and the table (4.1) becomes

i K K

a -sinO coso O

-cos'sine -sinosinO cose (4.2)

c cosocose sin~cose sine

As a result of axiosynunetry, the probability that a molecule will hit the
spherical zone (e0, e) is independent of 0. Thus we may set 0 - 0 in the
table (4.2)to obtain J

i j K

a 0 1 0

b -sinB 0 cose (4.3)p p

c cose 0 sine
p p

In order to preserve the notation used previously in connection with this
project, a will denote the angle between the radius vector from P and -Z and
0 will be the angle between I and the projection of the radius vector from P
on the plane (a,S).

Then (see Figure 1) by means of table (4.3) we obtain

= r sin~cose - (4.4)

+r os~cos nesip +sinO cos]

+r Fcosocos0cos p +sineosine p I c

15
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M Rcosy C (4.5)

Now let the heads of vectors x and y coincide. They y -F PO + K which yields

y = r sin~coseo a (4.6)

+r Lcosocoseosineo+sineocose

+ (rcosDcosecose o +sine sine] -R).c

The intersection of C and e can be found if we set y = y

Then we obtain

a) sin~cosO 0 = cosycospo

b) -cos~cose sine +sine cose = cossinp (4.7)o p o p

c) cosocose cose +sin0 sine = sinyo p o p

from 4.7c we obtain

cosO siny - tane tane (4.8)
cose cose ao po p

substituting 4.8 into 4.7b and solving for sirJ we obtain

sine 0 -sinsine
sire C OSTO P (4.9)

cosycosep

If we take the dot product of the vectors y (eq. 4.6) and PO we obtain

2 (R-r [Cos0coseocose +sineosin }

COS 2 2

But from 4.6 we have also

1- R2 [+sin27- 2siny(cosDcoseoCOSe p +sin~osinp)•

Ssin2 a sin 2 y2 (csocosecoSep+Sir@°sir@) 
2](4.10)

l+sin 7-2sin2'(cosocose +sine osine

16
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from equation 4.6 we obtain

r sin~cose -0-yIcospsina

r cosocose 0sinO p +sine cose]p - ,•Isii sia

Hence

-cos~cose sine +sine cose
tark8 - si-cos (4.11)

0

differentiating 4.11 with respect to 0 we obtain

cose [sinepcoseo-cosisineocosOP] do

1-(cosocose cose +sine sine )2
o p o p

Summarizing the above results:

The points of intersection of the curves Ce and e° are given by:

p
sinT-sine sine

coso = o e P in terms of 0 (4.13)co# cose cose
o p

si - sin sinsine in terms of • (4.14)cosycos6p

On e
0 2 s in 2 [I- (cosocos0 cose +sin0 sine )2] (4.15)

1+sin2 y-2siny(cosocoseocosO +sin•o sine p)

and

cose Ein pcOSOo-coscsine cose] do

1-(cos~cosooaOse +sineosine p)2 (

17
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Let max Ce , min Cep denote the maximum and minimum latitudes of curve Ce which

occur at 0 - 0 or 0 x.

When -A<O<-7 from Eq. 4.8 we obtain
2 p

at 0 - 0 max C + e-p 7

at 0 = I( min Ce -(I_ + y + ep)

When -7<p <Y from Eq. 4.8 we obtain

at 0 = 0 max Co M 1 + ep -

at 0 = 0 rain C- = X + +
p 2 p
p

When '<OpB again from 4.8 we obtain
p2

at 0 - 3 max Ce =2+ 7 - 0

at 0 - 0 min C. = - - + y + ep 2 p

Due to the geometrical symmetry it will suffice to consider the case 6 >0.P

We distinguish two cases

Case 1 1,..> max C ep>y
0-o- e

p

Case II max C >0 >6 min Ci
P P

Case I -
ep>71>6> max C
pY 2- I~ -6-

(see Figure 2) e does not intersect C6 . Let Geo be the surface region on
the vehicle bounaed below by 6 . Let P(8 ,0 ) denote the probability that a
molecule from the point p will hit the r~gion Geo.

18
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Then with the aid of 4.15 and 4.16 we obtain

P(Op,e) 0 -ff siracosc4adp
G
e

0 sine cose
p 0

sineo sin 21 (coso - sineoCOse) d

k o ro 2

cosO +tanB tane 2sinycose case
o p

Or

sine siny
p(e,)= 02

(4.17)

(1+sin 2 )sine -2sinysine 2xo p _ _ _ _ _ _d_ _ _ _ _+ wo6cose _______n2 ___

8xcoseo p 0 cosg+tane tan6 - 2sin8yo p 2sin~cose case
a p

In order to evaluate the integral in 4.17 we use the residue theorem by setting

2cosO - Z+Z 1

Le t li27
Let tanO tanB - 1+siny

o p 2sinycoseocose p

Then
2x d O 2 dZ (4.18)fo cosc+ f z 2+2?4+l

The roots of

z 2+2?AZ+l - 0 are (4.19)

.•Nt CA 2.1)1/2

19
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Consider the equation

f(x) - x2+2%+1

we obtain
f(l) - 1+2X+I 2(1+?,)

f(-l)- 1-2%+1 - 2(1-X)

But 4sinycos2 o 0 + (1-siny) 2

2 sinycoseocos6 >0 (4.20)
P

4sinsin2 e 0p 2 (l-sinr)2
1+;N 22 sinycose cose (4.21)

0 p

Hence 2<X or ,2_ 1>0

That is, equation 4.19 has real roots and on account of 4.20 and 4.21 we
conclude

- 1<-N-N (2_ 1) 1/2 <1<- %+(%,2_-1) 1/2

Hence the residue of 2 within /Z/-l is I
Z +2?,Z+ 2(X%2_1)1/2

it follows 2 v

o cosc+\ (O2. 1) 1/2

Therefore
sin0 sin7 (1+sin 27) sinieo- 2 sinysinO

p o 2 - 2_ 1/2 p (4.22)4cose cose (X2-1)0 P

sine sin G

2 2

where 
IG xll+sin 7)sir0 -2sinysin8] sin7

op2sinycos( 00 )+i+sin2] [ 2sin2ycos(e/ - )+1+sin2

20
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we can easily verify that when e i and e coincides with C6  (i.e.e 0

S2p
that P(e , eo) - sin 27 as it is expected

When e - e
o p

sine siny (1-siny)sinysin4
P(pep) 2 2P 4.23

p p2 2(1+sin 2+2sinycos2ep) 1/2

p

Case II

e° always intersects Ce
p

This occurs when max C >0 >min C whether 0 >y or e <y see Figures 3.

The intersection of 6 and C is given by cosO = siny - tan6 tan6
0 0 p cose 0 pcos p 0 p

(see Eq. 4.8). Let cZ be the first intersection, i.e. 0<0<K. Then the other
intersection is -0 . Let Ge be the surface area on the vehicle bounded by e

and C and for which e>eo. p
p

Then _1P(0Oo) =e ff siracosadacl =
p 0 tGe

0

sine cosO

s2aoin cos-sinoos ) 2d
cosl+tane tan - l+sin2 co

0 p 2sinycosO cosO

where P is given by

sine -sin2'sinB

osine P (Eq.4.9)
0 cosycosO
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or sino0sin(

p o (4.24)

(1+sin 27)sine°-2sinysine f do
+ 4xcoseocose Jo 01+i 2

cos4+tane tanO - 14sin2o p 2sin~'cose cose
0 p

+sin~y+ 2 0

To evaluate 4.24 use the following substitution

x = tan-

= 2dx X
1+x 2

coso = 2cos2 - 1 . l'x2 (4.25)
l+x2

Then
f dO 2 dx-oso+*A = +1-"" 2 X+1

x•

where 2+sin27

0 p 2sinycos 0 cose
0 p

Now 2 2 _ >Now• =-1 >0 since ?2-1>0

X-1 (-A(.1)2

Solving 4.25 for X and setting 0 - 0 we obtain

F cos(eo- p)-sin- 1/2

XI [,cos(e .+ )+sin7I

where we have taken the positive root since

0
0 <• P-'tan --2 - XI>O

0 2 1
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Then 4.24 becomes
sine 0amiy +sn27 F

P( po) o 2sit + 0 2 -0o)-G(O p, )tan' Il (4.26)

where G has been defined in Eq. 4.22

and 2-c 2sinycos(eo+6p)+l+sin
2 y

?+l -2sinycos(Oo- p)+l+sinZy

The formulas 4.22 and 4.26 should have the same value in their common region
of domain.

Set e° - Max C in Eq. 4.26

and (D W A 1o it

Then 0
I+

Hence tan- 1  j

and 4.27 reduces to 4.22.

Also when e. = min. C we expect P(0 ,0o) - sin 2y
p

Indeed, e =-A + e + 2o 2 p 1/2

X= O----tan 
1  XL

-0 = 0, P° -X

2

P(O ,e ) = sin2 y

Consider the special case where 0 0 0 - 00 p

Then sinpo 0 Po = 0

Then P(9p'0o) - sin 22 (what was expected)

p20 2
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4.1.2 From the Vehicle to the Chamber Wall

Consider the point P on the vehicle and the curve 0 on the chamber wall
(Figure 4,5). Again we need consider only e >0 with two Sases.P

Case I >6> max C (Figure 5)
2"c- o

p

Case II -Max C >eo> min C (Figure 4)
e c- o-
p p

Let P be a point on the vehicle with position (0, p) and let A be a point on

e such that Mez (see Figure 4).
o 2

If we set up an orthogonal system at P as before and make use of Table
(1.3) we obtain

X - RsinacosO a (4.27)

" R cosncosO sinO +sine cos b

"+ R os~cosO cOs6 +sinOs in] c

y = RsinrcosO° a (4.28)

+ R cosccose SinO +sineocosep]

+ R{oscDcosO cosO +sinOosinOe]'r c

The intersection of the curves Ce and 6 (if they intersect) is easily found
to be given by p

cos~cose cose +sine sine - 1
o p o p

Hence

coso° - siny - tanO tan6 (4.29)
cose cose o po p

as before.
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Also

-2 -(cos~cose 0 cose p+sinesip) (4.31)
l+sin 2-2 _iny(cosocosOocose +sin6osin P)

sine -sinysine

o cose cosy (4.32)

= cose [sine coseo -cos~sin0 cosep] do

l-(cos4co cose a +sin0 sinO )20- csc~eCSp o p

In an analogous manner as before (sec. 4.1.1) the following relations can be
derived

When Y< p•

at 0 = x Max C = e + 7e 2 pp

= 0 Min C = -- +e +7e 2 pp

When -,.<e p<y

at 0 = 0 Max C. = X + ep-7e 2 p

0 = 0 Min C . -1 + e +1e 2 p
p

When - •p-

at $ fi0 Max C = + 6 Op 7
e p 2 p

p
0 -x Min Ce = '+ e + Y)

25
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Case I R > Max C (Figure 5)

p

It occurs when e >y. Let G be the surface area on the chamber wall for
which e>e . e-- 0

Then
P(ep eo= ff siracosc•z~ (4.34)

p 0 9Ge
0

sine cose
sine 2x (coso - sinEocosSp ) do
4zsin7 fo li27

cosC+tane tane 1-sin y
o p 2sinycose coseo P

sine0 (l+sin 27)sineO-2sinysine 21
2sin + 8sin2 7cs cosS o Isn27

o p cosC+tanO tane 1+ sin 2'
o p 2sinycose coseo p

sine

2sin7 2sin2 y

Consider the special case where 0 = M =. We expect P(p e 1. A
substitution easily verifies thatPthis is indeed the case. p

Case II Max Ce >0o>Min Ce (Figure 4)
p p

As before we find

sine
P( e) 2sinS0  + (4.35)

-G(epSo) -l
,P0-tan- 1x(+12

sin 2 a' I7A¢+I

where G is defined in the same way as for equation 4.26.

26



AE DC.TDR-63-88

Formulas 4.34 and 4.35 should iive the same value in their common region
of domain. Indeed if 0o- Max C. - -2 p + Y ep> 7

*0 2~* - XBl ý [(i1/21]
4.35 reduces to 4.34.

Also when 0 - Min CO we expect P(O ,e ) - l

Set 0  -A - ep + 7, -B 1 or - p<<

1/21
0o 0 , Mo""• tan-l X, 0

and the result follows immediately.

4.1.3 From the Chamber Wall to the Chamber Wall

Consider both the point P and the curve e on the chamber wall. Thus
(see Figure 6) o

y - -Rc + x

a Rsin0cose 0 (4.36)

+R I7-cosocose0 sine +sircose]

+R [°osocos6 cos6 p +sino pinB

y1 = 2Rcosy lcospsin7 a + sirosin7 i-cosy 7] (4.37)

For the intersection of 6o and C (if they do intersect) we set
- - p

Y " Yl Then

a) sinrcose0 - 2cosycospsin7
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b) -cos~cose 0sine p+sino0 casep - 2cosysirl~siny' (4.38)

c) casocaseocase p+sJin6 sine p-1 -- 2cos2 Y

from 4.38c) we get

CO -cos2y - tanO tane

Substituting 4.39 inta 4.38b we get

sine
sine3 cot2ytane + 0(4.40)

p sin2ycase

Similarly we find

sin 2 1= 1 (1+cos~cose case +sine sine p (4.41)

A6 case0 [sine caseo-cos~sine 0cose]P d0D (4.42)

l-(casOcasO case p+sinO sine )2

2 2

it-~. -23t

Max e = 2y7 Max;- Cet- - (2y-
p p p

ea = 2 -p M x Ce it 2 -p
p p

2 p 2 2 p 2

Max C. = 3t-(2,'-O ) Max C e = -(2,'-e )

Min C. = -(e p+ 2y') Min C e= -(2y' + e P)
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2 p 2 F- 2

Max Ce M 2y-8p Max C. - 27-8p

Kin C6  M -x+24ep Min C9 - -s+2+O p

Again we distinguish two cases, Case I when 6° does not intersect C6 and
Case II when 8 does intersect C6  p

P

Case I t>00> max Ce
P

P(eo) - f- siracosadaA
p
P

where Geo is defined as previously but on the chamber wall. It is easy to see
then that

P(6 a L 2s cose0 [sin9.coso-cos0sinocOj de
1+(cosOcosCosocosnp+sino0 sine p

(c-os-sine Cosa o

nine 2% cst- ine 0o-CoS'

f 0
coso* tan 0tanOp + Cosa Co sa

So p

sine sine 0 sine60 2w do

2 +4wcosO0 Cosa 0  cosoftan 0 tanG + CosaCosa

0 p

Let X - tan9 tanO +o p cone come

2 1/2 sin0 +sine
"cos6 cos&

o p
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As before

f(l) - 2( 1+?A) f(Z) Z2+2--

f(-l)- 2(1-Z,)

cos(e -e )+I 2cos 2 eo-ep
01+p.)- 0 >0cose cose = cose cose >o p o p

cos(0o+6ep)- 0

cose coseo p

Hence -?.-(?2-I1) <-1<-N+(?2 -1)1/2 <1

and the residue of 1 within IZl - 1

Z2+2?,Z+I

1is 2 (.2_ 1)1/2

It follows f 2 dZ 2x
fo cos-. i 2 (2. 1)1/2

therefore
P(O e ~ sine 4.3(61 ol(p'eo) 2 2(.3

Case II Max Ce >eo>Min C0
p p

sine 1 +0 •) c~2P( peo 0 2s 0o + ; 7 o (4.44)

Lan 1  M1/2]
[ tan +1)
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Where o " CCS' -cos 2+sinO0sinOcs o

0 cose cose
- ~sine°

Do = sin' co t27tanWp+ si2cs

X cos(O0-O ) + cos2y 1/2

1 cos(e 0 ) - cos2y

1/2, 1-cos(e 0-)
_ sinO +sir

Notice that equation 4.54 reduces to equation 4.53 when e 0 Max C where
Max Ce =2- e p. Since,then, 0 p

00 it P 0 , tan-I 47-1

Whene -9e=0 0, thenO 00 -2y,, P-ao

121
tan 1  

0 and equation 4.54 gives us

1 2

P(ep,eo) Cos 2 for the half illuminated sphere.

4.2 RECAPITULATION

A. From the Chamber Wall to the Vehicle

Extending the previous results to the whole chamber wall we define Ceo
as the surface area on the vehicle which is accessible to the point P
and for which

e>e
-- O

and P (epeo) as the probability that a molecule leaving the point P will hit

the region G.
p

(a) Ge
0
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P~e e sine siny (445
pe 0e) 2 2 (.5

(b) Mi n C. 5 <O<Max C.
p p

sinD sin7 2

p 0 2% 0 X (12 0o) (.6

where -G tan-1  ?, [ i(~1

-2sinycos(+O ep)+1+sin 2Y(.7
-2sinycos(6 0-0 )+1+sin 2

X cos(e -e ID)-siny (4/28

1 cos(e+046 )+siny'(.8

G F1+sin 2 )sineo-Zsinysine] siny / (.9
3( f ~ o( O 0+ e p)+ l+ s n2 Y] E 2s in yco s(O 0 0p +1 +sin 2r 1 2 4. 9

(D and p are given by:

with the restrictions that

0<0 <
0
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B. From the Vehicle to the Chamber Wall

Now e° and ep switch surfaces. Ge is defined as previously. Ce is

the intersection of the tangent plane at P (of the vehicle) with the chagber

wall.

(a) Ge completely illuminated from P

sine
o- - (4.52)0 0~eo 2siny 2sin2 7

(b) Min C.e < Max Ce
p p

O eo -2sinr0 1 tn-jsin2 ' t [ k 1 1/2 (4.53)

where -._ 1 G, and p
X+1' I, %o

are given by 4.47, 4.48, 4.49, 4.50 and 4.51 respectively.

C. From the Chamber Wall to the Chamber Wall

Both e and e are on the chamber wall. G. (now on the chamber wall)o p
is defined as previously 0

(a) 6> Max Ce
p

sine

P(6p,e - s 0 + 1 (4.54)

(b) Min Ce <Bo< Max Ce
p p

1/2
Pee sine 1 A-~ 2 1 a 1  -1 1/2(4.55

p(ep 1 e0 ) - 2 "o + 0-) c X L (5

-1 !1/2
where o' 0 0o XI' 1 are given immediately after equation 4.44.
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5.0 COMPUTER LOGIC

The problem of determining analytically the molecular flux distribution
in the cases where discontinuous outgassing characteristics have been assumed
is exceedingly difficult. Consequently we have used a digital computer to ob-
tain solutions to the problem. The types of surface discontinuities we deal
with have been explained previously (see 4.0 Single Surface Discontinuity).
The procedure which is followed for a computer solution consists of parti-
tioning the surfaces into a number of spherical zones, each spherical zone
having uniform outgassing and pumping characteristics. The probability of
molecular transfer from each point of a spherical zone to another spherical
zone will be considered constant, thus giving rise to a step function along
the meridian of a surface for the probability of transfer from a point, to a
spherical zone. The molecular density of the molecules which leave a spherical
zone will be taken as uniformly distributed on this spherical zone so that the
molecular density along a meridian will assume the form of a step function
also. Thus the exact solution of the molecular flux distribution can be better
approximated by increasing the number of the spherical zones of each surface.

5.1 PARTITION

Both surfaces (chamber wall and vehicle) are partitioned into 2N
spherical zones of width nO where N is an integer. In numbering the sequence
of these sperhical zones we set

X r Lr-N-I)t&, (r-N)tW]

where X has been defined previously.r

Thus X1 -1, -= +

X,= (l-N)69, (2-N)&g]

2N L
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The choice of N is such that

a) N is reasonable large.

b) The discontinuous line or (lines) are boundaries of spherical zones.

c) 6 - y is a boundary of a spherical zone.

Obviously, the probability from a point of a latitude e6 of a
surface X to a spherical zone Yj is

PxIyj pxy(eiej)-pxy(e,ej+ (5.1.1)

In terms of the partition then Eq. (5.1.1) will denote the probability
from a spherical zone X to a spherical zone Y producing therefore a step
function for the probability distribution of a-surface with respect to a
spherical zone. Clearly then, a sufficient condition that

P xI Yj = PXKYr

is that

K = 2N-I+l, r = 2N-J+l

Hence

P - Px(2N-I+l) Y(2N-J+l) (5.1.2)

Hence, in view of Eq. (5.3.2) it is sufficient to calculate P for J> N1+1

5.2 PROBABILITY EQUATIONS

The probability equations which will be used in the computer solutions
have been derived previously and appear in section (4.2). In regrouping
these equations for computer use we have

Pcv(01ej) = as given by (4.45) from chamber (5.2.1)
wall to

PCV(eIej) - as given by (4.46) ) vehicle (5.2.2)

P i-sinej (5.2.3)

cc(ei,ej)
from chamber

l-.sslin 2 wall to
Pcc(6 1,eJ) - 2 sin2 chamber wall (5.2.4)

PCC(eIoj) - as given by (4.55) (5.2.5)
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Equations (5.2.1) and (5.2.2) pertain to the case "From Chamber Wall to
Vehicle" while Eqs. (5.2.3)-(5.2.5) pertain to the case "From Chamber Wall
to Chamber Wall". Here we have omitted the case "From Vehicle to Chamber
Wall" in view of the relation

PVC(e 1ilj) = P CV(e 1ie) sinm27 (5.2.6)

Thus there are actually two probability matrices which have to be determined,
one for the chamber-vehicle case and the other for the chamber-chamber case.

5.3 PROBABILITY FLOW CHARTS

In all cases we determine the probabilities (PYY(e6TeT) for 3> N+l. In
differencing the results by means of Eq. (5.1.1) an'dexieniing the domain of
J to J<N+l by means of Eq. (5.1.2) we obtain the probability matrices PCV
and P W

5.3.1 From Chamber Wall to Vehicle

Since it is sufficient to start with e<ajin view of the relation (5.1.2)
we may begin with eI> y-n/2. For each eIwe have

Lim C9  = 01+eI/2-7  if 01-?<0

= -e +i+/2+y if ei-p>o

As for the Lim C el we are only interested in the value of Lim C when
Lim C >0. I This occurs when 0 1 >n/2-7 yielding

Lim C e = +y-x/2
eI I

For e1-7<0

the domain of ej for a non zero probability is _0.<0 1 +/ 2 -7 Lim C e<0

S1r+y-g{/L2._i<eI j -/2-y Lirm C6 >0

and Pcv(e6,9j) is determined from Eq. (5.2.2)

For 01-7>0
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the domains of 6j are

a) OCj<<-6e1+/2+y Lim C <0

or e147-x/2ý6 3(-e14r/247 Lim, C >0

b) -19I4%/2+y<0J_2N

and PCV (eT, ) is determined by Eq. (5.2.2) for case a) and by (5.2.1) for case
b). In the How chart we have been using spherical zone sequential numbers.
The corresponding angles to these numbers are:

N-N2+I )e -O r/2-Y+6 - Li .CO -Y<0

*N+2Il )0 - Y

2N-N 2+1 -+ /2-y

N 2-N+I ) 0 - 7--/2+01 - Li.m CeI

3N+-N2+2-I o0 - n/2+7-0 1 - Lim C01 01-7>0

5.3.2 From Chamber Wall to Chamber Wall

We distinguish two cases I and II

Case I v/4-7>0

We start with 6j = 0 and 01- /2

We have

Lim C. -6 eI+n-27 eI<2y-n/2

- 2y-e I e1•2y-y/2
As for Lim C we notice that -Lim Ci -- (6i+27)>o when -w/2<0j<(- and for e•-y,

Lim C o<0 in all cases.

a) For 01<2y-x/2

the domains of 6j are
J\

i) Oej<- (Oi+ 2 7) if C >0

ii) -(ei+27 )_<J e6+i-2y 9
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or

iii) _O1j<1j+x-2y if Lim Cei <0

In case Ia, the Probabilities P C(e, ej) are determined by Eq. (5.2.4)

for i) and by (5.2.5) for ii) and by Eq.(1.2.5) for iii)

b) For ef>27 -n/2

the domains of e are

iv) _.oj<-(ei+2y)

v) -(e 1+27 )-<ej<2 7 "eI, if Lim Ce>O

vi) 2 7-ei<e,<,/ 2

or

vii) Oj<27-eI Lim Ci <0

viii) 2 7-ej<B</ 2  Lim C 1>0

or

ix) 0_ j<ir/2 if LimCeI <0

Then Eq. (5.2.3) for calculating P C(e 1 ,e0) is used in the cases iv)
while Eq. (5.2.4) is used for the cases v5 and vii) and Eq. (5.2.5) for the
cases vi), viii) and ix).

The corresponding angles to the sequential numbering which appears in
the flow chart are

2 (N+ 1-N2)- --- = -(ei+2 y)= Lim ce

2(N-N2)+1------0= n-2+6e = Lim Col ei<27-t/2

2N2+1 l e -- 27--/2

N-2N2 +1 e =-2y

Casa II n/4-y<0

In this case we start with e. = 0 and e 1>2Y-n
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We have
LimC l ei+x.27 e <27../2

- 2y-eI el>2y-,,12

As for Lim C we have

Lim Ce - (ei+27) if ei+2<x/2

- e1 +27-v if ei+27>/2

c) eI<2y-v/2
The domain of ej is

x) Q5sd<eI+4- 2 7 Lim Cer <0

xi) e6+2y-,_<j<ei+6(-27 LimCe >0

d) e6>27-E/2

The domain of 6j is

xii) _OLj<27-I ) Lim Cei <0

xiii) 2y-eigj< /2

or

xiv) c1+2y-i_<j<2y-0i Lim C6i>O

xv) 2y-ej<./2

Eq. (5.2.3) is used for the cases xiii) and xv) while (5.2.5) is used
for all the other cases in c) and d).
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The corresponding angles to the sequential numbering which appears in
the flow chart are

2(N-N 2+' e- eI-6 -2y - LimrCei eI <2C-x/2

2N 2+1 e - 27-n/2

3N-2N2+l o8 - E- 27

2(N 2-N)+i------- - 0i+27-E - Lim C.I 6i+2y>./2

2 (N+N 2+1)-T e - 27-eI = Lim CT e0•2y-v/2

5.4 MOLECULAR TRANSFER FLOW CHARTS
(single discontinuity on the chamber wall)

The area of a spherical zone of width W9 on a sphere of radius r is

4ir 2sin cos(6 ) (5.4.1)

If, however, A is small we may set

sin- A9 2A

and the spherical zone area will be

2 A9co ( 1) (5.4.2)2sir cos~e7#3

Thus, the flow which will hit a spherical zone Y due to the flow which
leaves a spherical zone X is (Area of X.)(density of how leaving XP
where X,Y are any combinaiion of C, V except the combination V,V. - JYI

The flow which leaves a spherical zone VI in the time interval
(n+l)T_<T<(n+42)T is

21r 2COs 60 = (- l-)' 12xr oSOJAP(C ) P (5.4.3)
v IPVI'n+-l 'v J1  c cosO J npCj nP VI

Similarly, the flow which leaves the spherical zone CI during the time
interval (n+l)T<T<(n+-2 )T is

2sr c2C°SIp(CI)n+l9 - (1-aK) 2N-11r 2 rc2Cos°jp(Cj)nPC C +2r v2cosj (5.4.4)

CK Jl L JI

,o P(VY) nPVjCj
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where

cosej . cos (6 +4) (5.4.5)

K- l _l<l<lI (5.4.6)

S22 22
V C Pc~/sin2

Noting that r v2/rc2 = sin2, PV Ci y (see Equation 5.2.6)

and denoting cosOiP(Xi)n bya (XI)n, Eqs. (5.4.3) and (5.4.4) are rewritten

as follows:

2 2N
a(V1)n+-l (l-av)/sin y E cosejp(Cj)nPc v (5.4.7)

j=1 J I

2N [ 1

G(C1)n+lff (l-aK J cos8j ( +p(V)P (5.4.8)

where K is defined by (5.4.6). The flow chart for the molecular
transfer is self-explanatory. The molecular incidence for each
spherical zone XI is found by the relation

2 r 2• a(Xi)n+1 Ea(Xi)n+1

= n=O nfi a (5.4.9)

2 rx i2eCOSI(l-ax ) I

The infinite series, however, is very rapidly coverging and in most
cases it is sufficient to take nO1 or less.

5.5 MODIFIED APPROACH TO THE COMPUTER SOLUTION

This approach is formulated in matrix notation and has the following

advantages over the approach described previously.

a) There are no limitations to the number of surface discontinuities
of the parallel type.

b) It is sufficient to know only the initial flows. Thus, calculations
of flows which leave the surfaces in subsequent time intervals are
unnecessary.

c) The final solution to the flux distribution is not the result of a
chopped off summation of an infinite series.

d) It is free of errors introduced in the calculations of the flows
which leave the surfaces during nTrt<(nf-l)T, nL_2.
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5.5.1 Matrix Notation

P1 P 2 PXY2N

X2Y1

P =

PX2N YI 2NY2N

FX1 (n) FX

-FX 2(n) FFX2
Fx(n) (n) FX FX

F2 N 
2n .XNj

0 1-0 0

0 1 -a

00

N.N
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cose 0 0

0 cose 2

E
N

"N 0

0 0 cos0 e2 N _

2 RX2

H - RX

where E19,+ I 2

e being the lower latitude of the I'th spherical zone.
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5.5.2 Molecular Transfer

The following difference equations are easily derived
2N

F3v(n-1) i (1-a =E PI VF C (n) (5.5.2.1)

z2N I., .()P ^()

FC (J$l) (1-a EIl (5.5.2.2)

In matrix notation the above two equations take the form

FV(nl) = AVP'CVFC(n) (5.5.2.3)

Fc(n+l) = Ac 1P'VCFV(n)+P'ccFC(ndj (5.5.2.4)

where the primes denote transpose matrices.

The boundary conditions then are

FV(0) = 21r2 v2 AvEFV (5.5.2.5)

Fc (0) = 2Ur CO ACEF (5.5.2.6)

From (5.5.2.3) and (5.5.2.4) in view of (5.5.2.5) and (5.5.2.6) we
obtain

FV(1) = 2 r 2r2OAvP'cvAcEFc (5.5.2.7)

FC(1) = Ac [, rV2LOPIVCAVEFV+2ItrC2ZpPIccACEFc] (5.5.2.8)

Substituting (5.5.2.3) into (5.5.2.4) we obtain

Fc(n+2) = Ac ft'vCAvP'cVFC(n)+P'CCFC(n+!l (5.5.2.9)

Summing up (5.5.2.9) from n = 0 to N =w and solving for Hc we obtain

HC v + P1 cc (5.5.2.10)

(FC ()+ ACP
1 Cin2 t

C ~sin 2

where I is the unit matrix.
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Similarly, summing up (5.5.2.3) from n - 0 to n - we obtain

HV - AvP'cv Lc+Fc(Oj• (5.5.2.11)

5.5.3 Molecular Flux Distribution

Since the area of the I'th spherical zone on surface X is 2r x2COSO 1
1 69where 8T = (I-N )2M = e i+-

the rate of incidence on this spherical zone is

RX = 2 1 (5.5.3.1)

Hence, in matrix form

RX (EAX)HX (5.5.3.2)

Then from (5.5.2.10) and (5.5.3.2) we obtain

RC = c.Ac V - 2C 7 CV + P'C EAC T (5.5.3.3)

wherer

T = AC (P.CVAVEFV+ L2cc + C cEFCI

Similarly, from (5.5.2.11) and (5.5.3.2) we obtain

RV (EAv)' 1[EACRC+ACEFC(RV= sn7AvP'cv (5.5.3.4)

sin 2

2 E-1 CVEAC [ReF]
sin P
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6.0 COMPUTER RESULTS

For studying general trends in the molecular flux distribution on the
chamber-vehicle surfaces, a variety of cases were chosen and the results were
plotted on semilog paper (see figures 16-26). Each of these figures contains
two graphs for the molecular flux distributions, one for the chamber wall
(dotted curve) and the other for the vehicle (circle curve). The cases under
study were chosen in terms of the following parameters.

a) Size of sun (large and small)
b) Size of vehicle (large and small)
c) Pumping coefficients
d) Source of outgassing

The size of the sun is determined by the discontinuous line N1 while the
size of the vehicle is determined by the magnitude of N2 . For the size of the
sun and the vehicle there were chosen two values for N1 and N2

NI = 30 Large size sun
= 33 Small size sun

N2 = 6 Large size vehicle (7=30°)
= 3 Small size vehicle (7=150)

The different combinations of a), b), c), and d) making up the different test
cases are shown in the following table.

TABLE OF TEST CASES

2N - 36

Case N1 N2 a1  a2  av ql q2  q m

1 30 6 .9 0 0 0 1 0 10

2 33 6 .9 0 1 0 10

3 33 3 .9 0 1 0 10

4 30 6 .95 0 1 0 10

5 30 6 .8 0 1 0 15

6 30 6 .9 1 0 0 10

7 30 6 .9 0 0 1 10

8 30 6 .8 0 0 1 15

9 33 3 .9 0 0 1 10
10 30 6 .9 .1 .1 .3 .5 1 10

11 30 6 .9 .1 .1 .01 .1 1 10
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Looking at these graphs we can point out a number of interesting phenomena.
Generally speaking, in the cases of a non-outgassin- vehicle the flux distri-
butions on the chamber wall and on the vehicle cross each other at a point.
It is not as much the size of the sun as it is the size of the vehicle which
affects this crossing point. A comparison between cases 1) and 2) (Figures
16 and 17) shows that the crossing point has been affected by.less than 50

while between cases 2) and 3) (Figures 18 and 19) the crossing point has been
displaced by 200. Also a slight increase in the pumping coefficient on the
chamber wall will hardly affect the crossing point as it can be seen from
cases 1) and 4) (Figures 16 and 19). An interesting phenomenon is presented
in case 6 (Figure 21). The two flux distributions almost coincide. If the
area of the sun shrinks to zero we have the uniform case of outgassing chamber
wall. Then the molecular flux on the unpumping areas is FC(1-aC)/a on both
the chamber wall and the vehicle as it can be seen from equation 3.1.5.
Setting FC= l and ac = .9 we find

FC (l'ac) 1

aC 9

Thus in case 6 the flux distributions on both surfaces of the chamber wall and
of the vehicle are equal and 10 times as much the flux distributions in the
uniform case. From this observation it appears that the presence of a non-
pumping non-outgassing sun will have a very slight effect on the uniformity
of molecular flux distribution. Of course, this cannot be the case for all
sizes of vehicle. From the ratio of the area of the sun to the area of the
vehicle in case 6 we can state safely that both fluxes are equal to a constant
depending on the size of the sun as long as

sun area <.2
vehicle area -

As we have implied above, in the cases of predominantly outgassing vehicle
the two fluxes do not cross each other. Further, the flux distribution on the
chamber wall remains practically uniformly distributed, apart from a slight
negligible variation, while the flux on the vehicle, increases from a minimum
at e - -f/ 2 to a point between 00 and 300 above the equation at a constant
rate and from that point on at a higher rate leveling off around e - ,/2.

Case 7 is the superposition of cases 1, 6 and 10 each multiplied by an
appropriate factor if we neglect the pumping coefficient aC2 and aV. Thus if
we multiply case 1 by .5 and case 6 by .3 and substract the sum of these two
results from case 10 we will obtain approximately case 7. To see this let us
select three points 6 - -%/2, 0, %/2 l+dI denotes the flux of the I'th case
at any 6 we must have d wd1 2-(.5d1 +.3d 6 ) either on the chamber wall or on
the vehicle. Consider Zhe lux on the chamber wall at 0 - %/2.
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d1= 4.9248x10"3, d6 0 1.0238, do10  5.4276x10"1 d 7 2.4138x10"1

d - (.5dI+.3d 6 ) 6 .23316

At e o

d1 = 9.1821xi0- 2 d6 = 1.0154, d10 - 6.2723xi0I1

d7 - 2.9613xi0"I

d -o (.5dl+.3d 6 ) = 2.7670x10"
1

At e x g/2
d1 = 1.9230x10 1  d6 = 1.0107, d - 6.527x10"l

d7 = 2.8306x10
1

d - (.5d1+.3d6 ) = .25334

The agreement is better at e = v/2 and becomes less accurate with increasing
0. This is of course due to the fact that we have discarded the pumping
coefficient aC, and aV in case 10. The flux distribution on the vehicle can
be considered in a similar way. Thus, if N , aCl, ac2 and a are kept fixed,
the results of any combination of source ouigassing can be obtained from a
linear combination of the following three cases

i) q= 1, q2 = q =0

ii) q = 0, q2 = 1, q = 0

iii) q 1  q2 - 0, q 1I

The superposition principle becomes also useful in the cases where many types
of gases are considered with independent pumping and outgassing characteristics
for each type of gas. The solution then in that case is obtained by superim-
posing the individual solutions for each type of gas.
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FIGURE I
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FIGURE 5
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FIGURE 6
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FIGURE 7
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FIGURE 8
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FIGURE 9
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FIGURE 10
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FIGURE 11
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FIGURE 12
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FIGURE 13
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PROBABILITY FLOW CHART
FROM CHAMBER WALL TO VEHICLE AND FROM VEHICLE TO CHAMBER WALL
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PROBABILITY FLOW CHART
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MOLECULAR TRANSFER FLOW CNART
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PROBABILITY FLOW CHART (REVISED)
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PROBABILITY FLOW CHART (REVISED)
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